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The stability properties of the Shuman pressure gradient averaging technique are in- 
vestigated with the linearized shallow water equations. In the simplest case an analytic 
expression is obtained for the stability condition. The maximum time step is twice the 
value for the leapfrog scheme. When a mean flog is added to the equations the time step 
must be reduced. The time averaging suggested by Robert is examined and again leads 
to a shorter time step. In each case however, the use of the Shuman averaging allows 
a significantly longer time step. 

1. INTRODUCTION 

Shuman [5] has proposed a modification to the leapfrog scheme for the primitive 
equations that are used in numerical weather prediction. The scheme that uses a 
weighted average of the pressure gradient at the past, present, and future times, 
allows a longer time step than the one given by the CFL condition. Shuman, 
Brown, and Campana [6] have carried out the linear analysis of this modification 
for the three cases: (1) the barotropic model, (2) a two-layer model with pressure 
as the vertical coordinate, and (3) a two-layer model with the Phillips [3] sigma 
coordinate system. In this paper we will extend and amplify their analysis of the 
linearized barotropic model to include the physically important class of problems 
where the basic model is modified by inclusion of a mean flow term. We will also 
examine the effect of including the time filter designed by Robert [4], both with and 
without a mean flow present. It will be seen that both the presence of a mean 
flow and the time filtering reduce the time step, but that the use of the Shuman 
technique is still advantageous. 
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2. BASIC SOLUTION 

The linearized equations for the barotropic model with no Coriolis force and no 
mean flow are: 

au a+ -=-- 
at ax 3 (1) 

(2) 

Here, LJ is the velocity component in the x-direction and 4/g is the departure of 
the free surface height from its mean value Q/g. These equations describe shallow 
water waves that move with speed @ 1 l 2. Shuman, Brown, and Campana [6] 
numerically determined the stability curve for this problem, with pressure gradient 
averaging. We will show that their results are analytically derivable. 

The finite difference approximations to equations (1) and (2) with the Shuman 
pressure gradient averaging included are: 

(4) 

where the discretization uses x = j Ax and t = n At. The usual leapfrog 
differencing is obtained by setting QL = 0. This scheme is explicit since p+l may 
be obtained from (4) before it is needed in (3). 

To obtain the computational stability properties of this scheme, we substitute 
the following expressions 

uin = Awn exp(ik Axj), 

&” = Bwn exp(ik A,uj), 
(5) 

into (3) and (4). After the constants A and B have been eliminated we obtain the 
following quartic equation for w: 

where 

oJ4 + 4sciw3 - 2[1 - 2S(l - 201)] co* + 4srrw + 1 = 0, (6) 

S = (At/A,v)2 @ sin2 k Ax. (7) 
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Since S and oi are real, the roots of (6) are either real or in complex conjugate 
pairs. Due to the symmetry in the differencing we expect that 1 w ) = 1 for some 
range of the parameters. As a result the polynomial factors to 

(w’ + 2ap + l)(& + 2a,w + 1) = 0. (8) 

If we expand (8) and compare with (6) we find that a, and ap must satisfy the 
following equation: 

ai - 2&a, + S(1 - 2~x) - 1 = 0, i = 1,2. (9) 

The solutions to this equation are 

aj = Sci * ((SIX + 1)” - S)l12. (10) 

It can be seen from (8) that only when the ai’s are real and of magnitude less than 
or equal to unity will all the roots of (8) have 1 w I = 1. The value of ai will be 
real when the quantity under the radical is nonnegative; therefore, this condition 
can be written 

(Sol + 1)” - s > 0. 

If we choose the equality we will obtain the following stability relation: 

(11) 

s = 1 - 2Ly - (1 - 4or)1/2 
2012 7 (12) 

where the minus sign in front of the radical was chosen to make the expression 
reasonable in the limit as LX-+ 0. The condition that the ai’s have magnitude not 
greater than 1 leads to the condition 

a < ). (13) 

This is consistent with (12) which becomes complex for a: > f. 
The combination of conditions (12) and (13) is given in Fig. 1 as the curve 

labeled cr = 0. Shuman, Brown, and Campana [6] determined essentially this curve 
from their numerical solution for the roots of (6). The maximum value of S which 
is S = 4, occurs at 01 = a. For the usual leapfrog differencing (a = 0) the maximum 
value of S that allows computationally stable solutions is S = 1. Since S is propor- 
tional to LIP (see Eq. (7)) it follows that the use of the Shuman pressure gradient 
averaging in this linear system allows a doubling of the time step as compared with 
the standard leapfrog scheme. However, it may be difficult to achieve this factor 
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FIG. 1. Computational stability curves for selected values of O. 

of 2 in practice when other effects are included since the width of the stable region 
goes to zero as S approaches 4. In fact a value of (II which is slightly less than $ 
would probably be preferable. 

3. SOLUTIONS WITH MEAN FLOW 

In this section we add the effects of a constant mean flow to the stability analysis. 
The linearized equations are: 

(15) 

Normally, the addition of the mean flow terms does not have a great effect on the 
computational stability criteria since the phase speed of the external gravity 
waves @12, is generally much greater than the speed of the mean wind, iJ. 

When Eqs. (14) and (15) are put in finite difference form with the use of the 
approximations in (3) and (4), the mean advection terms are evaluated with centered 

581/2x/2-4 
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finite differences, and the relations (5) are substituted into the finite difference 
forms of (14) and (15), we obtain the following equation for w: 

~~+4(S~+iu)~~+2[2S(l -201)--l +2a2)]w’t4(S~--io)w+ 1 =O, 

(16) 
where 

u = (C/ dr/flx) sin k Ax. (17) 

Note that dividing (16) by w4 and taking the complex conjugate of the equation, 
yields an equation in l/w* with the same coefficients as (16). Thus, it follows that 
w is a root of (16) if and only if (w*)-’ is also a root, and therefore, the roots must 
be distributed in exactly one of the following ways: 

Case I. Four roots (including multiple roots) on the unit circle 

(e’, 3 rdl eid2 &d3 ) &Q4; 
41 + $2 + $3 = -44). 

Case ZZ. Two roots on the unit circle, two roots off the unit circle 

(.&, ei*s, peidl, (l/p) eiml; 24, + & = - 4,). 

Case ZZZ. Four roots off the unit circle 

(peid, (l/p) eim, {e-id, (I/{) e-jm, p, 5 # I). 

In each case the fact that the product of the roots is equal to the last term in 
(16) was used. 

The analysis of Cases I-III indicates that (16) has at least one factorization of 
the form 

(a2 + 2aeie40 + eie)(mz + 2be-io/2m + e-ie) = 0, (W 

for some angle 8, and a and b real. Furthermore it is easily shown, by analyzing 
the possible combinations, that in either of the unstable cases (Cases II or III), 
the factorization (18) must be unique and either a or ZJ (or both) greater than unity 
in magnitude, whereas the stable case will generally have three distinct represen- 
tations with both a and b less than or equal to unity in magnitude. The only 
exception will be when stable, but degenerate (multiple) roots occur. 

If we expand (18) and compare with (16) we can obtain the following equations: 

a = SOL set e/2 + u csc 812, (19) 
b = SOL set 012 - u csc 812, (20) 

S20r2 se? 812 - S + Sar + co9 012 - u2 cot2 812 = 0. (21) 
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When we write u = co9 912 and use trigonometric identities we can obtain 
the following polynomial in U: 

P,(u) = (u - l)(u2 + S(2a - 1) u + SV) + A.42 = 0, (22) 

where one different factorization of the form (18) arises from each distinct solution 
of (22) in 0 < u < 1. Thus by our above comments a sufficient condition for 
stability is that (22) have more than one solution in [0, 11. The appearance of (22) 
as a cubic should be expected, since as noted above in the generalized case of 
stability, we expect three distinct factorizations. When only one solution of (22) 
occurs in [0, 11, then there must be instability unless (16) has a triple root. It can 
be shown that there is at most one value of u for which (16) has a triple root. 

With this characterization consider the qualitative behavior of P,,(u). Note for 
all u > 0, cr > 0 that PO(u) will lie above the curve 

PO(U) = (u - l)(u2 + S(2a - 1) U + PO?), (23) 

where it is easily seen that 

P,(O) = P,(O) = --SW, 

LOU) = 0, 

P,‘(l) = (SC% + I)2 - s. 

(24) 

(25) 

(26) 

FIG. 2. The function P,(u) for S = 1.0 and 01 = 0.23 for selected values of O. 
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Also note that for fixed U, PO(u) is a strictly increasing function of CT. These obser- 
vations now allow us to visualize fairly easily how an instability develops. Consider 
Fig. 2, which shows a typical situation when PO(u) has three distinct root 
0 ,( u < 1, i.e., cr = 0 yields a stable procedure. Then observe that as G increases 
the curve moves upward, causing the value of the smaller root to decrease, and 
the two larger roots to move closer together. Eventually, for some value urnax, 
the larger two roots degenerate to a single double root with Pm,,,(u) tangent to 
the axis there. Finally for u > urnax, the curve detaches from the axis, leaving only 
the single smaller root, and hence instability must occur. 

Intriguingly, this construction also allows us to visualize a situation when u > 0 
will yield a stable procedure even though cr = 0 does not. This is shown in Fig. 3, 
where as 0 increases the curve first attaches itself producing a double lower root, 

FIG. 3. The function P,(U) for S = 1.0 and a = 0.25326 for selected values of CT. 

which then moves apart, until eventually a double upper root appears, followed 
by instability. Numerical solution of (16) verifies that this in fact occurs, as 
evidenced by the curves for OL > $ in Fig. 1. 

Now consider the situation when P,,‘(I) > 0 and 0 < (Y < ). The roots of 
PO(u) = 0 are 

u, = 1, (27) 
u, = (S/2)[(1 - 2a) - (1 - 4”)q (28) 

242 = (S/2)[(1 - 201) + (1 - 4CY)‘/“]. (29) 
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Since (1 - 401) < (1 - 20r)~, it follows that P,,(u) has a shape as indicated in Fig. 2. 
The maximum stable value of CJ (hereafter called a,& occurs when the larger 
root of PO’(u) = 0 is also a double root of P,,(u). 

Since P-(u) is a cubic, the conditions can be worked our formally; however, the 
resulting conditions are too cumbersome to provide computational or analytic 
insights. Therefore, we shall present some simpler necessary conditions and 
approximate expressions. 

First, observe that if P,,‘(u) < 0, PO(u) has exactly one root in 0 < u -=z 1, hence, 
P,,(u) must have exactly one root in 0 < u < 1. Thus P,,‘(u) > 0 is a necessary 
condition for stability when 0 > 0. (Observe the condition that (26) be nonnegative 
is identical to (ll).) 

A rather accurate approximation to u max for this situation can be obtained by 
noting that the onset of instability must correspond to a = 1, since a > 1 yields, 
from (18) a solution with j w I > 1. Thus, from (19) omax satisfies 

or 
SCL set 0/a + urnax csc 812 = 1, 

($2 + 
urnax 

(1 - Q/2 = l, (30) 

where uL denotes the smallest root of P,,, (u). This is necessary since both a and b 
must be continuously dependent on u. 

The uL in (30) is not known exactly, but the examination of Fig. 2 indicates that 

UL - 4 9 (31) 

where u1 is the lower root of P,,(u). Thus, to a first approximation, stability will 
occur for 

O< umax S (1 - Ul)1’2{l - (Sa/(Ul)1’2)}, 0 < a < (l/4), (32) 

where u1 is given by (28). It will be seen that this equation gives an excellent 
approximation to the values obtained numerically. Unfortunately, a similar 
approximation for & < 01 has not yet been found. 

The roots of (16) were computed numerically and the resulting stability curves 
are given in Fig. 1 for selected values of u. All the curves in Fig. 1 have similar 
shapes with the lowest curves corresponding to the highest values of u. The 
following stability condition for 01 = 0 is easily obtained: 

w2 + 1 u 1 < 1. (33) 

For u = 0.1, the increase in dt over the value for 01 = 0 (see Eq. (17)) is about 
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SO>& A typical value of u for operational numerical prediction models would be 
between 0.1 and 0.2 Figure 1 also shows that stability can occur for the larger 
values of u in the region E > $. However, these values of O( should not be used 
because there will always be a value of k dx in (17) that will give an arbitrarily small 
value of u and therefore instability. 

Tables I and II compare values on the numerical stability curve from Fig. 1 
with values computed from (30). The agreement is quite good with the largest 
difference occurring for (Y near ) and for larger values of u. 

TABLE I 

Comparison of the values of S” 

a 0 0.1 0.2 0.225 0.25 

s an 0.78 1.00 1.50 1.75 2.62 

&“Ul 0.80 1.02 1.55 1.80 2.50 

a On the stability curve from Fig. 1 (S,& with the values of S computed 
from Eq. (30) (San) for D = 0.1. 

TABLE II 

Comparison of the Values of 9’ 

a 0 0.1 0.2 0.225 0.25 

S ml 0.33 0.43 0.61 0.71 1.04 

.%“rn 0.35 0.46 0.62 0.74 0.88 

o Same as Table I except for o = 0.4. 

4. SOLUTION WITH TIME FILTER 

Time filtering has been used in numerical weather prediction models to damp 
both physical and numerical noise (Robert [4], Haltiner and McCollough [2j). 
Consider the following centered time filter: 

F(t) = F,(t) + y[F(t + At) + F(t - At) - 2F(t)]. (34) 

This form is convenient for operational prediction because it uses the previous 
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averaged value, which saves machine storage. When this filter is used in linear 
equations which have solutions proportional to c#, Eq. (34) takes the form 

F(r) = (F(r) + y[F(t + At) - 2F(t)]/(l - yd). (35) 

Here we have used the relation F(r - dt) = a-lF(t). 
This time filter is introduced into the finite difference Eqs. (3) and (4) by replacing 

u;-” and 4y-l with the filtered values obtained from (35). When the relations (5) 
are introduced into the time averaged difference equations we obtain the following: 

fiJ4 + 4[Sa - 71 d + [4(y(l + y) + S[l - 201(1 + y)]) - 21 w2 
+ 4]S(a(l + 2Y) - 27) + y(1 - 2y)] OJ + 4Sy(y - 4 + (1 - 2y)2 = 0. 

(36) 

If we consider the special case of no pressure gradient averaging (a = 0), the 
equation reduces to 

[w’ - 2yw - (1 - 2y)]2 = -4S(w - y)2. (37) 

Take the square root of both sides of this equation and solve for w which yields 

w = y f is/2 & ((y - 1)2 - S)‘/2. (38) 

This result was obtained by Asselin [I] who has discussed the solutions in detail. 
When S is sufficiently small the solutions will be damped. The critical value of S, 
which is always less than 1, decreases as y increases. However, in the damping 
region, the damping rate increases with increasing y. 

In the general case the roots to (36) must be found numerically. Figure 4 con- 
tains the curves that separate the unstable solutions from the stable solutions for 
selected values of y. The left-hand limits of the curves show the reduction in the 
critical S as a function of y for 01 = 0. The curve for y = 0.05 closely approximates 
the curve for u = 0 in Fig. 1. As y increases the maximum stable value decreases 
and shifts to the right. In fact sizable stable regions exist for 01 > 1 depending 
on y. For y = 0 there are no stable solutions for (Y > 4. J. A. Brown, Jr. has 
obtained similar results independently (private communication). 

We now consider the effect of the time averaging on the solutions when the mean 
flow is included. When the time averaging effects are added to equation (16) 
we obtain: 

a4 + ~[SCX - y + io] d + [4(y(y + I) - u2 + S( 1 - 2& + 1))) - 2 - 12ayi] w2 

+ 4[S(ol(l + 2~) - 2~) + ~(1 - 2~ + 2y2) + Wy(y + 1) - 1 )I w 
+ 4Sy(y(l - ~7”) - a) + (1 - 2~)~ + i4ay(l - 27) = 0. (39 
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FIG. 4. Computational stability curves for selected values of y for o = 0. 

02 03 04 

FIG. 5. Computational stability curves for selected values of y for (I = 0.1. 

Figure 5 contains the stability curves which were obtained by numerical solution 
of (39) for the value u = 0.1. The curves which are for y = 0.1, 0.2, 0.3 show 
smaller values of maximum values of S than are seen in Fig. 3. However, the starting 
points (01 = 0) are also smaller. In general the peaks are located at about the same 
values of 01 and the peaks are broader. Both Figs. 4 and 5 show a large improvement 
in maximum S over the value with no pressure gradient averaging (a = 0). 

5. CONCLUSIONS 

The results of Shuman, Brown, and Campana for the stability properties of the 
Shuman [5] pressure gradient averaging technique with the linearized shallow 
water equations have been extended to include problems characterized by a 
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persistent mean flow. In addition, a numerical result of Shuman, Brown, and 
Campana has been derived analytically in Section 2, showing that in the simplest 
case the time step can be doubled for LY = $. However, since the width of the stable 
region becomes very narrow as 01 = & is approached, the best value of 01 would be 
slightly less than t. We have demonstrated that, when a mean flow is included the 
time step must be reduced; however, for reasonable values of the mean flow 
(a = 0.1 to 0.2) the time step can still be increased by 70 to 80 %. The time 
averaging of all variables which was suggested by Robert [4] has been used to 
damp unwanted high frequency components in numerical forecasts. The use of 
the time filtering, however, requires a smaller time step, and therefore, more 
computation time. When the time filtering is used in conjunction with the pressure 
gradient averaging, the time step can be signitkantly increased although for the 
larger values of y the time step may not be much larger than with no time or 
pressure gradient averaging. When the time averaging is used the optimum value 
of 01 is critically dependent on y. The addition of the mean flow decreases the time 
step, but does not appreciably affect the optimal 01. 

The Shuman [5] pressure gradient averaging technique has been used 
operationally at the National Meteorological Center and it is now undergoing 
tests at the Fleet Numerical Weather Central. This technique should be useful 
in other fluid dynamical applications provided that the velocities are appreciably 
less than the fastest gravity waves. 
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